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1 Introduction

We propose a proof guidance approach for ATP systems based on reinforcement learning (RL).
Unlike previous approaches, we specifically target long proofs, i.e., our aim is to be able to find
proofs that are hundreds or even thousands of steps long.

2 Learning Setup

Theorem proving can be seen as a special kind of reinforcement learning environment where
states are proof states and actions are inference rules that are applicable in a given state. What
makes this setup particularly challenging is that proof trajectories can be long with extremely
sparse rewards: only once a proof has been found.

We propose to use curriculum learning on the length of proofs to counterbalance sparse
rewards. We assume that we have a few problems for which proof trajectories are already
available. We start exploration from the end of these trajectories, where rewards are reasonably
close, then we gradually move backwards towards the beginning of the proof. This approach
has already been successfully applied to Atari games in [5] and in many other reinforcement
learning experiments.

Another peculiarity of theorem proving as a reinforcement learning environment is that the
action space is discrete, but potentially infinite. Depending on the proof system, the set of
actions can grow indefinitely during the proof (such as selecting the given clause in saturation-
style provers), while in other systems the action space is fixed for a given problem (which is
the case in many tableau calculi). However, even in the latter scenario, actions can be different
from problem to problem.

In this current work we focus on providing guidance for LeanCoP/FCoP [4, 7, 2, 3] theorem
prover that is based on the connection tableau. In FCoP, the action space is roughly correlated
with the size of the problem set, extended with axioms to handle equality. While this can be
large for large problems, only a few actions are available in a particular state. We describe in
Section 3 how we approach this action space.

A well known challenge of combining theorem provers with learning systems is embedding
discrete proof objects (states and actions) into continuous Euclidean spaces that learners can
work on. We use the hand engineered feature representation that is provided by FCoP [3],
mostly based on triples occurring in the proof tree, first used in [1]. In the longer run, we
believe that finding better representations can yield significant improvement.

We focus on Proximal Policy Optimization (PPO) [6], a successful reinforcement learning
technique, which is a variant of the actor-critic framework. We jointly train a value and a policy
model that evaluate proof states and actions, respectively. In PPO, the policy is forced to stay
close to its previous version at each update, which results in a more stable training.
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3 Handling the Action Space

As described earlier, we are dealing with a discrete action space that can be large and that may
not be known in advance. This does not fit into the traditional RL setups where either 1) the
action space is small and fixed and a policy can output a probability vector, or 2) the action
space is continuous and the policy can directly parameterize actions.

We have briefly experimented with using a fixed action space, which can be used for narrow
problem types, such as addition/multiplication problems in Robinson arithmetic. Here the
policy can directly compute a probability for all actions, irrespective of whether the action is a
valid move.

However, most of our work focuses on a more robust setup, that we called the action selector
model. The policy receives the state, as well as all available actions as input and returns a
probability vector over the available actions. This model can easily generalize to yet unseen
actions, since actions appear as inputs and the model just selects one of them. It can also
handle large action spaces, provided not too many actions are available at once. Also note
that the policy can make decisions based on what actions are available. Another advantage of
this approach is that we exploit the features of actions, not only those of the space. Instead
of having to learn “Given such state features, you should make the this action”, we now can
learn “If state and action features are related in a particular way, then this is the action to be
selected”. The fact that all proof objects are embedded into the same feature space, makes this
approach particularly comfortable. This model is very similar to the action selection in [3].

Implementing the action selector model poses technical difficulties, since different number of
actions are available at each step. However, we can exploit the fact that at any proof state only
a few actions are available, which can be upper bounded by a small constant C. The policy
always assumes C action inputs and the unused slots are filled with zeros (empty actions).

4 Experiments

In our first set of experiments, we wanted to show the feasibility of our approach on problems
that require long proofs, but that have a rather simple structure. These experiments target
arithmetic formulae in Robinson arithmetic. We use successor notation, which yields very long
expressions. Trying other representations is future work. For these problems, we upper-bounded
the number of available actions by 22, though typically it was not more than 5-6.

Our learners are implemented in Python and the FCoP theorem prover is accessed through
its Python interface PyCoP. We experimented with decision trees and neural networks and the
latter provided better results. Our networks are simple multi-layer perceptrons, using 4 layers
of 512 neurons, with ReLU nonlinearity.

4.1 Generalizing from Long Proofs

We trained on the proof of 7 × 2 = 14 (51 steps) and successfully generalized to formulae
A×B = C, A + B = C with arbitrarily large numbers. E.x. the proof of 29 × 29 = 841 (2641
steps) was found in 13.5 sec. It is instructive to see what this time was spent on: FCoP proof
steps (3 sec), guidance neural network evaluation (9 sec), feature extraction (1.5 sec). Training
took around 105 steps.
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4.2 Generalizing from Short Proofs

We were interested to see how large the training problem needs to be in order to generalize.
With a little tuning, we managed to obtain the very same results of Subsection 4.1 when trained
on 1 × 1 = 1 (9 steps). This opens up the possibility of fully unsupervised learning: the 9 step
long proof of this simple problem can be found with various brute force methods, which then
can be used to learn general addition and multiplication. Training took 2 × 105 steps.

4.3 Generalizing to Complex Formulae

Next we experimented with more complex formulae of the shape F = N , where N is a number
and F contains a random sequence of operators and operands. We generated a set S of 66
problems with 3 operators and each operand bounded to be in [0, 2]. After training on 1×1 = 1,
the system could prove most of S and we continued training on them. By the end of this two step
training process, we generated new random sequences with larger numbers and more operators,
all of which the system could solve. Training took around 2× 106 steps. Some examples of test
problems:

• ((8 + 5) × 8) × 5 = 520: 16856 steps, 95.7 sec

• ((7 × 9) + 3) × 8 = 528: 13937 steps, 78.9 sec

5 Conclusion

We built a reinforcement learning system using PPO that learns to provide guidance for the
FCoP connection prover. The system learns to prove equations involving addition and multipli-
cation in Robinson arithmetic from extremely little supervision and can generalize to complex
formulae. In the future, we hope to be able to extend these results to more complex problem
domains.
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